

Discourses & Mathematical Illustrations pertaining to the

Extinction Shift Principle

under the Electrodynamics of Galilean Transformations

Definition of *Extinction Shift*

Electromagnetism

Any wave of wavelength λ_0 and frequency v_0 of a *primary* electromagnetic wave will propagate along an interference-free path with velocity *C* relative to its most **DIRECT** source **S** which moves with velocity v_1 , but with velocity $c + v_1$ relative to the rest frame.

The *undisturbed* wavelength λ_0 will remain unchanged {preserved in all other frames of reference}, along an interference-free path, independent of the source velocity. Details: Refer to book: Discourses & Mathematical Illustrations pertaining to the Extinction Shift Principle under the Electrodynamics of Galilean Transformations Dr. Edward Henry Dowdye, Jr. ISBN: 0-9634471-5-7. Web-Site http://www.extinctionshift.com Definition of Extinction Shift

Electromagnetism

Upon interference, the *primary* wave of velocity *C* relative to **S** and wavelength λ_0 is extinguished via mater-wave interaction, thus terminating the interference-free path at the point of interference, namely, the **SECONDARY** source **S'** moving with velocity v_2 . Therefrom a *secondary* wave is re-emitted on the frequency $v' = v_0(1 + \frac{v_1 - v_2}{c})$ as would be noted in the frame of reference of the *secondary* source.

IDEAL VACUUM

The re-emitted *secondary* wave will have the *undisturbed* wavelength $\lambda' = \frac{c}{v'} = \lambda_0 (1 + \frac{v_1 - v_2}{c})^{-1}$ {preserved in all frames} and will propagate along an interference free path with velocity **c** relative to **S'**, with velocity $c + v_2$ relative to the rest frame and with velocity $c + v_2 - v_1$ relative to **S**.

Definition of Extinction Shift

Electromagnetism

Similarly, upon interference, the *secondary* wave of velocity C relative to **S'** and wavelength λ' is extinguished via mater-wave interaction, thus terminating the interference-free path at the point of interference, namely, the **TERTIARY** source **S''** moving with velocity V_3 . Therefrom a *tertiary* wave is re-emitted on the frequency $v'' = v'(1 + \frac{v_1 - v_2}{c})(1 + \frac{v_2 - v_3}{c})$ as would be noted in the frame of reference of the *tertiary* source moving with velocity V_3 .

The re-emitted tertiary wave will have the undisturbed wavelength

 $\lambda'' = \frac{c}{v''} = \lambda_0 \left(1 + \frac{v_1 - v_2}{c}\right)^{-1} \left(1 + \frac{v_2 - v_3}{c}\right)^{-1}$ {preserved in all frames} and will propagate along an interference free path with velocity *C* relative to **S**" and with velocity *c* + v₃ relative to the rest frame.

Similarly, any N-ary wave will be re-emitted with velocity C relative to its N-ary source of velocity v_N and will propagate with velocity $c + v_N$ relative to the rest frame.

Details: Refer to book: Discourses & Mathematical Illustrations pertaining to the Extinction Shift Principle under the Electrodynamics of Galilean Transformations Dr. Edward Henry Dowdye, Jr. ISBN: 0-9634471-5-7. Web-Site http://www.extinctionshift.com

Gravitation

A gravitation field set up by a mass particle M will propagate along an interference free path with velocity *c* relative to its most DIRECT source M which move with velocity v_1 relative to the rest frame. Analogous to the case of electromagnetism, any information on M, as can be extracted from the *primary* gravitational wave of wavelength λ_0 would propagate with velocity *c* relative to M, moving with velocity v_1 , but with velocity $c + v_1$ relative to the rest frame.

The *undisturbed* gravitational wavelength λ_0 will remain unchanged {preserved in all other frames of reference}, independent of the source velocity.

The *primary* gravitational wave, bearing information on its most DIRECT source, the mass particle M, propagates with velocity C relative to M which move with velocity v_1 relative to the rest frame. Assume the *primary* wave propagates with wavelength λ_0 and velocity $c + v_1$ relative to the rest frame. It would have the velocity $c + v_1 - v_2$ relative to the particle m, perturbing it, causing it to wiggle at the frequency $v' = \frac{c + v_1 - v_2}{\lambda_0} = v_0(1 + \frac{v_1 - v_2}{c})$. The gravitation set up by the wiggling m conveys *indirect* information on M via a *secondary* wave of wavelength $\lambda ' = \frac{c}{v'} = \lambda_0 (1 + \frac{v_1 - v_2}{c})^{-1}$, propagating with velocity C relative to m, with velocity $c + v_2$

relative to the rest frame and velocity $c + v_1 - v_2$ relative to M.

Pure Classical Physics - Euclidean Space - Galilean Transformations

AXIOM 1 Let a resting *hypothetical observer* of velocity $v_0 = 0$ read the output of an experiment and note the *undisturbed* light pulse of intensity I, created by the moving source S of velocity $v_1 = v$. The time duration of the pulse of length L in the frame of reference of S is $\tau = \frac{L}{c}$ and is moving with velocity c relative to S. The *hypothetical observer* would note the time duration of $\tau' = \tau (1 + \frac{v_1 - v_0}{c})^{-1}$ of the light pulse and its *undisturbed* velocity $c + v_1 - v_0 = c + v$.

Pure Classical Physics • Euclidean Space • Galilean Transformations

AXIOM 2 The *undisturbed* primary light pulse of length L from the *primary* moving source $S(v_1 = v)$ is incident at a fixed window $W(v_2 = 0)$ with the relative velocity $C + v_1 - v_2 = C + v$. The *primary* pulse is absorbed and propagated in the window medium with an *effective* velocity of C/n, where n is the index of refraction of the window medium. A new pulse is then re-emitted by W, a new secondary source, with velocity $C + v_2 = C$ relative to the rest frame.

In the process of re-emission, from the *primary* moving source **S** to the fixe *secondary* source **W**, the velocity of propagation is shifted by the factor $\frac{c}{c+v} = (1 + \frac{v}{c})^{-1}$ from the *primary* to *secondary* wave.

The time duration for the illumination of the incident face of the window by the *primary* pulse and the emission of the *secondary* pulse at the other face remains unchanged. Thus, the *extinction shift will result in a decrease/increase length of the re-emitted pulse by* the factor $\left(1 \pm \frac{v}{c}\right)^{-1}$ for an approaching/receding light source of velocity $\pm v$.

Hence, only the *extinction shifted* pulse of length $L' = L(1 + \frac{v}{c})^{-1}$ is measurable for the approaching source **S**!

Pure Classical Physics • Euclidean Space • Galilean Transformations

AXIOM 3 Let a resting *hypothetical observer* of velocity $V_0 = 0$ read the output of an experiment and note the *undisturbed* wavelength created by the moving primary source **S** of velocity $V_1 = V$. The *hypothetical observer* would note that the *undisturbed, extinction free* **primary** wave of wavelength λ_0 is independent of both the source **S** velocity V_1 and the *hypothetical observer*'s own velocity V_0 .

The *undisturbed* wavelength λ_0 does **not** depend on the frame of reference!

Pure Classical Physics - Euclidean Space - Galilean Transformations

AXIOM 4 Any measurement on the primary *undisturbed* wave by ordinary means would cause the velocity and wavelength of the primary wave from the primary source **S** of velocity $V_1 = \pm V$ to be re-emitted. The primary wave is *extinguished* and re-emitted with velocity **C** relative to the secondary source, namely, the window **W**. The dipoles in the window medium become secondary sources of emission and vibrate in phase with the wave incident at the boundary of **W**. The *secondary* wave is re-emitted with velocity **C** relative to its interference, namely, its secondary source **W**, but with velocity $C \pm V$ relative to the rest frame. The relative frequency of the *primary* wave is unaltered during the process of re-emission into a *secondary* wave at the interference { W }, as would be noted by any observer in the frame of reference of the interference!

Any measurement on the

primary *undisturbed* wave of wavelength λ_0 by ordinary means would result in an observation of an *extinction shifted* wave of wavelength $\lambda' :::: \{WINDOW AXIOM\}$.

Pure Classical Physics • Euclidean Space • Galilean Transformations

AXIOM 5 The window W_1 recedes/approaches a fixed primary source **S** that is at rest ($V_1 = 0$) and is illuminated at the relative frequency $v_0(1 \pm \frac{v}{c})$ by **S** whose frequency is v_0 . W_1 then re-emits a **new** wave on the frequency $v_0(1 \pm \frac{v}{c})(1 \pm \frac{v}{c}) = v_0(1 - \frac{v^2}{c^2})$ with velocity $C \pm V$ relative to the rest frame as would be noted by an observer in that frame of reference. A fixed W_2 extinguishes this wave and then re-emits a **new** wave on the relative frequency $v_0(1 - \frac{v^2}{c^2})$ of W_1 as would be perceived in the reference frame of W_2 with velocity **C** relative to W_2 .

The frequency noted at the output of a moving window is always a red shifted frequency $\nu' = \nu_0 (1 - \frac{\nu^2}{c^2})$, and is independent of the direction of the window motion. {WINDOW AXIOM}.

Pure Classical Physics • Euclidean Space • Galilean Transformations

AXIOM 6 A second moving window W_3 recedes/approaches a fixed secondary source W_2 that is at rest ($V_3 = 0$) and is illuminated at the relative frequency $v_0(1 \pm \frac{v}{c} - \frac{v^2}{c^2} \mp \frac{v^3}{c^3})$ by W_2 whose frequency is $v_0(1 - \frac{v^2}{c^2})$, the output of the experiment in **AXIOM 5**. W_3 then remits a **new** wave on the frequency $v_0(1 - \frac{v^2}{c^2})(1 \pm \frac{v}{c}) = v_0(1 - \frac{v^2}{c^2})^2$ with velocity $C \pm V$ relative to the rest frame as would be noted by an observer in that frame of reference. A fixed W_4 extinguishes this wave and then re-emits a **new** wave on the relative frequency $v_0(1 - \frac{v^2}{c^2})(1 \pm \frac{v}{c}) = v_0(1 - \frac{v^2}{c^2})^2$ with velocity C relative to W_4 .

The frequency noted at the output of two moving windows separated by fixed interference $v' = v_0 (1 - \frac{v^2}{c^2})^2$, and is again independent of the direction of the window motion. {WINDOW AXIOM}.

Pure Classical Physics • Euclidean Space • Galilean Transformations

Frame

Rest Frame

Secondary Source at rest

The hypothetical observer would find $\Phi = \Phi_0 Sin2\pi (vt + \frac{1}{\lambda}x)$ to be a solution of the wave equation of the primary wave at velocity **C** relative to **S**, where $v\lambda = C$, but at velocity $\mathbf{C'} \neq \mathbf{C}$ relative to the rest frame. The ordinary observer would find $\Phi' = \Phi'_0 Sin2\pi (v't' + \frac{1}{\lambda'}x')$ to be a solution of the wave equation of the secondary wave at velocity **C** relative to **S**.

{Important Note!!!: There is no time dilation in *Euclidean Space* under electrodynamics of *Galilean Transformations!* Thus t' = t.} Both the *hypothetical* and the *ordinary* observer would find that the velocity of the wave being observed is always

$$\nu' \lambda' = \left[\nu(1 \pm \frac{\nu}{c})\right] \left[\lambda(1 \pm \frac{\nu}{c})^{-1}\right] = \nu \lambda = c$$
 relative to its **most** primary source.

Frame

/elocit

Differentiating the equation for Φ twice after t and x, the hypothetical observer gets $\frac{\partial^2 \Phi}{\partial t^2} = -\Phi (2\pi)^2 v^2 = v^2 \lambda^2 \frac{\partial^2 \Phi}{\partial x^2}$ and

 $\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} - \frac{1}{v^2 \lambda^2} \frac{\partial^2 \Phi}{\partial t^2} = 0 \quad \text{. The ordinary observer derives} \quad \frac{\partial^2 \Phi'}{\partial {x'}^2} + \frac{\partial^2 \Phi'}{\partial {y'}^2} + \frac{\partial^2 \Phi'}{\partial {z'}^2} - \frac{1}{v'^2 {\lambda'}^2} \frac{\partial^2 \Phi'}{\partial {t'}^2} = 0 \quad \text{.}$